Presenter:
Courtney Ostromecki, Graduate Student – MSc program, Verchere Lab, BC Women's and Children's Hospital, University of British Columbia (Vancouver)
Title of Paper:
Stress-induced β cell early senescence confers protection against type 1 diabetes
URL link to publication source:
https://www.cell.com/cell-metabolism/fulltext/S1550-4131(23)00383-2
Abstract:
During the progression of type 1 diabetes (T1D), β cells are exposed to significant stress and, therefore, require adaptive responses to survive. The adaptive mechanisms that can preserve β cell function and survival in the face of autoimmunity remain unclear. Here, we show that the deletion of the unfolded protein response (UPR) genes Atf6α or Ire1α in β cells of non-obese diabetic (NOD) mice prior to insulitis generates a p21-driven early senescence phenotype and alters the β cell secretome that significantly enhances the leukemia inhibitory factor-mediated recruitment of M2 macrophages to islets. Consequently, M2 macrophages promote anti-inflammatory responses and immune surveillance that cause the resolution of islet inflammation, the removal of terminally senesced β cells, the reduction of β cell apoptosis, and protection against T1D. We further demonstrate that the p21-mediated early senescence signature is conserved in the residual β cells of T1D patients. Our findings reveal a previously unrecognized link between β cell UPR and senescence that, if leveraged, may represent a novel preventive strategy for T1D.